
The ACT measurement of the lensing power spectrum

May 12, 2023

In April 2023, the Atacama Cosmology Telescope collaboration has released a measurement of a
signal dominated lensing map over a quarter of the sky, and its associated power spectrum. The goal
of this tutorial is to compute the underlying theoretical lensing power spectrum in the ΛCDM model
and compare it to the data.

Figure 1: Top: ACT DR6 CMB lensing mass map presented in this work. The map covers 9400 deg2

or sky fraction fsky = 0.23 with a signal-to-noise significantly greater than unity over a wide range
of scales. Bright orange corresponding to peaks of the dark-matter dominated mass distribution and
dark purple regions corresponding to voids. Bottom: the ACT DR6 lensing potential power spectrum
bandpowers for our baseline (combined temperature and polarization) analysis
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Useful quantities

1 Mpc = 3.086× 1022 m

G = 6.674× 10−11 m3kg−1s−2

mH = 1.6735575× 10−27 kg

c = 3× 108 ms−1

(1)

1 Energy densities

The first step to compute the prediction for the form and amplitude of the ΛCDM lensing power spec-
trum is to compute the density of the different components in the Universe.

We will work in the LCDM framework with the following cosmological parameters:

TCMB = 2.7255 K

H0 = 67.5 km/s/Mpc

Ωbh
2 = 0.022

Ωcdmh
2 = 0.122

Ωm = Ωb + Ωcdm (2)

Ωb stands for Omega baryons, and is defined as the ratio of the current baryon density over the
current critical density of the Universe

Ωb =
ρ0
b

ρ0
c

the critical density today is defined such as

ρ0
c =

3H2
0

8πG
(3)

and h is the reduced Hubble factor

h =
H0

100 [km/s/Mpc]
(4)

1. Compute numerically the value of H0 in s−1 unit.

2. Compute numerically the value of ρ0
b and ρ0

cdm in kg/m3, let’s assume that all baryonic matter
is composed of hydrogen, how many hydrogen atoms is there per cubic meter in the universe ?

3. Photons at equilibrium with temperature TCMB follow a Bose-Einstein distribution fγ(ν|TCMB) =[
exp

(
hν

kBTCMB

)
− 1
]−1

, the energy density of photons is given by

ρ0
γc

2 = 2

∫
d3p

(2π~)3
hνfγ(ν|TCMB) (5)

for photons, p = hν
c , setting x = hν

kBTCMB
show that the integral can be written

ρ0
γc

2 =
(kBTCMB)4

~3c3π2

∫
dxx3 [exp (x)− 1)]−1 (6)

Using Γ(s)ζ(s) =
∫∞

0
ts−1

et−1dt and Γ(4) = 3!, ζ(4) = π4

90 Show that

ρ0
γ =

π2(kBTCMB)4

15~3c5
(7)
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Figure 2: comoving distance as a function of redshift in the LCDM Universe.

4. Compute Ωγ numerically.

5. We also need to include the contribution from neutrinos, the formula for the neutrinos density
is similar to the one of photons with some corrections, a factor 7

8 coming from the fact that

neutrinos are fermions and a factor (4/11)4/3 coming from the fact that neutrinos are a bit colder
than photons because they decouple before the electron-positron annihilation (which reheat the
plasma) Tν = (4/11)1/3Tγ , we also need to account for the fact that there are three species of
neutrinos Neff = 3.046 (the fact that it is not exactly 3 comes from QED correction)

ρ0
ν = Neff

7

8

π2(kBTν)4

15~3c5
= Neff

7

8
(4/11)4/3ρ0

γ (8)

Compute Ωrad = Ωγ + Ων numerically.

6. Get the value of ΩΛ assuming that Ωm + Ωrad + ΩΛ = 1, note that this relation is only true if
the universe is flat (which is one of our assumptions here).

2 Distances

We will also need to be able to compute distance in the FLRW Universe

They are lot of useful distances definition in an expanding Universe, here we will use comoving
distance. Imagine a pair of galaxies, their physical distance will increase due to the expansion of the
Universe, but their comoving distance, which is measured with coordinates following the expansion of
the Universe will stay fixed. The comoving distance between us and an object at redshift z can be
computed as (see paragraph 1 of notes)

χ =

∫ z

0

cdz′

H(z′)
(9)

Where

H(z) = H0

√
Ωrad(1 + z)4 + Ωm(1 + z)3 + ΩΛ (10)

1. Compute numerically the co-moving distance between us and the last scattering surface, assum-
ing the CMB is emitted at z∗ = 1100 and give its value in Mpc. What is its value in Giga
light-year?, compare it to the age of the Universe which is 13.787 Giga year.
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2. Compute the comoving distance for an array of 104 redshifts, logarithmically spaced1 between
zmin = 10−4 and zmax = 104, you should get something looking like Fig 2.

3. Something that will be useful for later is a way to get the redshift associated to a given comov-
ing distance, so basically inverting Eq 9. A simple way to create this is to interpolate the array
created in the previous question to get z(χ). you can use the python function:

1 import numpy as np

2 from scipy.interpolate import InterpolatedUnivariateSpline

3

4 def interpolate_z_and_chi(H0 , Omega_r , Omega_m , Omega_Lambda , logmin_z

=-4, logmax_z=4, nz =10**4):

5

6 """

7 This function return the interpolation of z(chi)

8

9 Parameters

10 ----------

11 H0: float

12 Hubble constant value in km/s/Mpc

13 Omega_r: float

14 Omega radiation

15 Omega_m: float

16 Omega matter

17 Omega_lambda: float

18 Omega dark energy

19 logmin_z: float

20 Minimal value of log(z) for the interpolation

21 logmax_z: float

22 Maximum value of log(z) for the interpolation

23 nz: integer

24 number of z values

25 """

26

27 redshift = np.logspace(logmin_z , logmax_z , nz)

28 chi = np.zeros(nz)

29 for i, z in enumerate(redshift):

30 chi[i] = comoving_distance(z, H0 , Omega_r , Omega_m , Omega_Lambda

)

31 z_of_chi = InterpolatedUnivariateSpline(chi , redshift)

32

33 return z_of_chi

What is the redshift corresponding to a comoving distance of 1 Gpc ?

3 Lensing

The lensing can be described from a remapping of the CMB photons from a position

xtrue = χLSS

θ1
S

θ2
S

1

 (11)

1You can form the redshift array using np.logspace(-4,4,10000)
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Figure 3: Path of a light ray without (left) and with (right) lensing.

lens plane source plane

xL

xS = xL + δx

θS

Figure 4: drawing for question (a)
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to a position

xobs = χLSS

θ1

θ2

1

 (12)

Where θ1
S , θ

2
S refers to the true source position, while θ1, θ2 refers to its observed position (see Fig 3).

χLSS is the comoving distance to the last scattering surface. After a lengthy derivation (see paragraph
2 of notes), The relationship between the two position is given by

θiS = θi + ∆θi (13)

(14)

∆θi = δij
∂

∂θj
φL(θ) (15)

φL(θ) = −2

∫ χLSS

0

dχ1

χ1
ψ (x(θ, χ1), η0 − χ1)

(
1− χ1

χLSS

)
(16)

φL(θ) is the lensing potential, its angular gradient will encode the change of position between true
and observed position of the source. We see that it is given as an integral along the line of sight of

the gravitational potential ψ times a geometric factor
(
χLSS−χ1

χ1χLSS

)
that account for where the deflection

happens.

(a) (Optional) Let’s check that the deflection has the correct sign, for simplicity let’s think about
it with a single lens and only two dimensions. The situation is represented in Figure 4. Let’s
imagine that the center of the lens sit at xL, what will be the sign of ∆θ = θS − θ for a source
located at xS = xL + δx with δx positive) ?

Tip: you can use that for x > xL on the lens plane, ∂
∂θψ > 0 since ψ is negative for over-density,

and ψmin = ψ(xL)

The lensing power is given by (see paragraph 3 of notes)

CL` = 4

∫ χLSS

0
dχ1

(
χLSS − χ1

χ2
1χLSS

)2

Pψ

(
k =

`+ 1/2

χ1
, z(χ1)

)
(17)

This is the quantity we want to compute in this tutorial, we already have a way to compute χ so what

we need is an expression for Pψ

(
k = `+1/2

χ1
, z(χ1)

)
. In order to get this expression, we need to solve

the Einstein-Boltzmann equations for perturbation in the Universe, I have done it for you using the
public code CAMB

1. First download the tar file at the following url, and untar it, the data consist of a power spectrum
of the form k2Pψ(k, z) for different value of k and z. We will make an interpolation table using
the following function

1 import numpy as np

2 from scipy.interpolate import interp2d

3

4 def get_P_z_and_k_interp(mode):

5 """

6 This function read and interpolate k^{2}P_{\psi}(k,z)

7

8 Parameters

9 ----------

10 H0: float
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11 Hubble constant value in km/s/Mpc

12

13 """

14

15 P_z_and_k = np.load(f"data/P_k_and_z_{mode}.npy")

16 k_array = np.load("data/k_array.npy")

17 z_array = np.load("data/z_array.npy")

18 P_z_and_k_interp = interp2d(z_array , k_array , P_z_and_k.flatten ())

19 return z_array , k_array , P_z_and_k_interp

I have precomputed k4Pψ(k, z) for two modes, ’lcdm’ and ’baryons only’, we will first do the
computation with the lcdm mode.

2. Plot k4Pψ as a function of k at different redshift z = [0, 0.5, 1, 4, 20]

3. The integral from CL` goes from 0 to the comoving distance to the last scattering surface χLSS,
you can see that it diverges at 0, in reality this doesn’t affect the result because it only affect
the ` = 0 term. However it can lead to numerical instability so instead of doing the integral∫ χLSS

0 dχ1 we will do
∫ χLSS

χmin
dχ1 with χmin = 10.

Create an evenly spaced array χ of comoving distance between χmin and χLSS containing 100
values.

4. Create an array of the corresponding redshift values z(χ) using the interpolation function that
we have defined in Section 2.

5. Ok time to do the integral, we will compute the lensing power spectrum for ` ∈ [2, 2000], looking
at the formula we see that the lensing potential will be computed as

1 l_array = np.arange(2, 2000 + 1, dtype=np.float64)

2 cl_phi = np.zeros(l_array.shape)

3 for i, l in enumerate(l_array):

4 k_array = (l + 0.5) / chi_array

5 cl_phi[i] = 0

6 for z, chi , k in zip(z_array , chi_array , k_array):

7 cl_phi[i] += 4 * dchis * P_z_and_k_interp(z, k) * (( chi_star -

chi) / (chi ** 2 * chi_star)) ** 2 / k ** 4

Plot the resulting `
5
2 (`+ 1)2CL` and compare it with Figure 1.

6. In the same tarball as for question 1, you will find the measured lensing power spectrum ”re-

sult act.dat” with format, `b, `
5
2
b (`b + 1)2CL`b , `

5
2
b (`b + 1)2σL`b , where σ are the errors on the mea-

surement and `b the central value of the ` bin. Plot these data on the top of the theory curve.
Note that there are small deviations compared to Figure 1, this is due to some approximations
we made along the way in this derivation.

7. Redo the computation for the mode ’baryons only’, and conclude.
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