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Before we start: some
non cosmological probes
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Fig. 1. The rotation curve for NGC 3198. r is the distance from the galactic center and v(r) is the
rotation speed. The data is from van Albada et al [6].



Dark matter really ? or modified gravity ?

Example MOND:
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https://arxiv.org/pdi/astro-ph/0207469 .pdf
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Fig.1. MOND rotation curves compared to observed
H1 rotation curves for the four galaxies from the sample
of BBS with Cepheid-based distances. The dotted, long-
dashed, and short-dashed lines are the Newtonian rotation
curves of the stellar disc, bulge, and gaseous components

respectively.



Dark matter really ? or modified gravity ?

More challenging for modified gravity : the bullet cluster




Dark matter really ? or modified gravity ?

More challenging for modified gravity : the bullet cluster
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Dark matter really ? or modified gravity ?

Some galaxies seems to have a deficit on dark matter

NGC 1052-DF2 and NGC 1052-DF4 are ultra diffuse galaxy whose kinematic can be
explain without dark matter

e.g https://www.nature.com/articles/s41586-022-04665-6



https://www.nature.com/articles/s41586-022-04665-6

(st1ll controversial)

A possible scenario
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The fact that DM do not interact with
baryonic matter is key to understand the
CMB and LSS distribution, in the following
we will discuss how exactly CMB physics
depends on the matter content in the universe



The cosmic microwave background

First discovered in 1964 by Penzias and Wilson
Their measurement clearly showing the presence
of the microwave background, with their
instrument having an excess 4.2K antenna
temperature which they could not account for.

https://articles.adsabs.harvard.edu/full/seri/ApdJ../0142//0000418.000.html

Fun fact: Penzias phoned a friend at MIT, for unrelated reason.

Burke asked about the progress of the experiment, Burke had

Recently spoken with one of his colleague Ken Turner, who was just back from a visi
at Princeton, during which he had followed a seminar by Peebles about
nucleosynthesis and possible relic radiation.



The cosmic microwave background

First discovered in 1964 by Penzias and Wilson
Their measurement clearly showing the presence
of the microwave background, with their
instrument having an excess 4.2K antenna
temperature which they could not account for.

https://articles.adsabs.harvard.edu/full/seri/ApdJ../0142//0000418.000.html

Fun fact: Penzias phoned a friend at MIT, for unrelated reason.

Burke asked about the progress of the experiment, Burke had

Recently spoken with one of his colleague Ken Turner, who was just back from a visi
at Princeton, during which he had followed a seminar by Peebles about
nucleosynthesis and possible relic radiation.

The signal observed by Penizas and Wilson was a feature
predicted by hot big band theory



According to the original observations of Penzias and Wilson, the galactic plane emitted some astrophysical sources of radiation
(center), but above and below, all that remained was a near-perfect, uniform background of radiation. (NASA | WMAP
SCIENCE TEAM)



The cosmic microwave background

1990 — FIRAS (Far InfraRed Absolute Spectrophotometer) on the Cosmic Background

Explorer (COBE) satellite measures the black body form of the CMB spectrum with
exquisite precision

https://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990ApJ...354L..37M&classic=YES
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The cosmic microwave background

Since then the focus has been on COBE
measuring the anisotropies of the L3
cosmic microwave background
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About projection

The standard in the CMB community
1s to use the Mollweide projection which
preserves accuracy of proportions in area







So what do we actually measure
when we look at the cosmic
microwave background
anisotropies?



The early universe is composed of a plasma with four
different components: Photons, Neutrinos, Dark Matter, Baryons

This 4 species influence together in the following way

Photons and electrons interact via
Compton scattering

e +tvy<—e +v

Electrons and protons interact via
Coulomb scattering

e +p<—e +p
Neutrinos interact via weak interaction

Ve +€ —— V.+e€e

Dark matter only interacts gravitationally



At a redshift around z = 1100, T = 3 eV = 3000 K, Compton scattering of
electrons and photons become inefficient and electrons and protons can
recombine 1nto hydrogen atoms (and some helium) the CMB 1s emitted

p+e — H+ v

The photons free stream towards us
And we observe the average
CMB temperature today with

Tz:zreC,CMB _ 97K
1 + 2rec

Tz:O,CMB —
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Observed CMB
temperature

© = O(xEarth, N, to)

= (B9 + )

NR
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« Monopole »: local temperature of
The CMB on the last scattering surface

L

Oo(eiss,t) = 5 [ O, zuss, )

Gravitational potential
-> Gravitational doppler effect

R
+ eup|y, + 2 wdn
UE:

Variations of the gravitational potential
along the path of the photons from
the last scattering surface to us

-> Integrated Sachs Wolfe effect

€ direction of
propagation of photons

Uy velocity of the
baryons-photons fluid at decoupling
-> Standard doppler effect



The CMB maps will be the sum of the effect of :
the local temperature on the LSS




The CMB maps will be the sum of the effect of :

the local temperature on the LSS + The gravitational doppler effect
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The CMB maps will be the sum of the effect of :
the local temperature on the LSS + The gravitational doppler effect +
+ the kinematic doppler effect




The CMB maps will be the sum of the effect of :

the local temperature on the LSS + The gravitational doppler effect +
+ the kinematic doppler effect + the ISW effect







In reality, the Universe transition from opaque to transparent 1s not instantaneous,
So we have to introduce the visibility function.
It’s a function that represent the probability that a photon last scatters at a given

redshift:

g(2)
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The last scattering surface has a finite thickness



This modify our formula into

O = /OnR dng(n) [(©o + ¥) + eup] + 2 /OnR dn exp(—T7)1

NR

Fundamental equation of CMB anisotropies

So the right hand side is the source of the temperature anisotropies observed today



This modify our formula into

o - /O " dng(n) 1@ + 1) + eus] + 2 /0 " dnexp(—)d

NR

Fundamental equation of CMB anisotropies

So the right hand side is the source of the temperature anisotropies observed today

The question become, how do we compute each terms of this expression ?
In order to compute the value of the CMB temperature today we therefore need to
know:

nat 1s the local temperature of the plasma at the time the CMB 1s emitted
nat 1s the evolution of the gravitational potential wells in the Universe
nat 1s the plasma velocity

nat 1s the visibility function, 1.e, how does the free electron density varies

£



The first thing we need 1s a metric, that tells us how stuff moves in the universe
In this course we will use the perturbed FLRW metric in Newtonian gauge

ds* = —(1 4 2¢(z,t))dt* + a®(t);;[1 + 24(x, t)|dx' dz’
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The first thing we need 1s a metric, that tells us how stuff moves in the universe
In this course we will use the perturbed FLRW metric in Newtonian gauge

ds* = —(1 4 2¢(z,t))dt* + a®(t);;[1 + 24(x, t)|dx' dz’
/ /

¢ corresponds to the

. . @ is the perturbation to the spatial
newtonian potential

curvature, it can be interpreted as
a local perturbation to the scale

faCtOr (m t \/1 _|_2¢ T t)

At the time of CMB emission ¢, 1) ~ 104

so any higher order term can be dropped



Then we use two set of equations:

The first set tells us how gravity responds to the matter-energy content of the
Universe, there are the Einstein equations, they tell us about the evolution of the
gravitational potential wells in the Universe

k2¢—|-3a—, (¢’— zpa—/) = 471Ga’dp
a a
k*(¢ + 1) ~ 0

Einstein equations



Then we use two set of equations:

The first set tells us how gravity responds to the matter-energy content of the
Universe, there are the Einstein equations, they tell us about the evolution of the
gravitational potential wells in the Universe

k2¢+3“—/ (qb'— zp“—’) = 471Ga’dp
a a
k*(¢ + ) ~ 0

This equation 1s the generalization of the Poisson equation in general relativity
in the newtonian limit, it take the familiar form

—V?%p = 47TGCL25,0 0P = PcOc + PpOp + PO~ + PuOy

The extra terms are there to take into account the expansion of the universe



Then we use two set of equations:

The first set tells us how gravity responds to the matter-energy content of the
Universe, there are the Einstein equations, they tell us about the evolution of the
gravitational potential wells in the Universe

k2¢+3“—’ (¢’— w“—,) = 471Ga’dp
a a
k*(¢ + ) ~ 0

This equation tell us that the two potentials are approximately equal in magnitude
and opposite 1n sign



The second set tells us about how the perturbations evolves, and are
called the Boltzmann equations

These equations tell us about the dynamics of each components of the plasma

i ) i
O +ikp® = —¢ —ikup—1" |09 — 0O + pup — §P2,ul—[
o0, + iku, = —3¢
, a :
U, U = —ik Y
a
5 +ikuy, = —3¢
u'-i—a—/’u, = —ik¢+T—,[u + 3101 ]
b T U = R LU 1

0c, 0p Dark matter and baryons overdensity

U, Up Dark matter and baryons velocity



While 1t would take too long to re-derive all of these equations here, we can gain
some 1ntuition by re-deriving the ones followed by dark matter.

The main tool for deriving Boltzmann equation is the distribution function.
Let’s consider a set of particules occupying some region of space,
These particles are completely described by their positions and momenta {z;, p;}

We can define a distribution function f(Z,P;t)  which relate to the
number of particles in a small phase space elements around (Z,p)

N(z,p,t) = f(x,p,t)(Az)” ((ﬁf)):j
/ \ \

Number of particles at position x Distribution Volume of phase space
with momentum p at time t function element




The distribution function can be used to define all macroscopic properties of a
collection of particules, e.g the density and energy density

3
nS(mat) :.98/ (gﬂz))gfs(mapvt)

We can play a bit with these equations, for example by calculating
the average number and energy density of CMB photons



For example : Photons are bosons, in equilibrium at temperature T,
They have the following Bose Einstein distribution function

1
f”y(PQ TCMB) — exp ( » ) Y

TcMmB

The average density of CMB photons 1n the universe 1s given by

5 d3p 1
(271')3 QP/TCMB —1

n(TcMmB)

8T e /Oodx z? _ TE)XEB)Tems _ 2¢(3)Téms
(2m)3 Jo e —1 2 2



For example : Photons are bosons, in equilibrium at temperature T,
They have the following Bose Einstein distribution function

1
fv(pQ TCMB) — exp ( » ) Y

TcMmB

The average density of CMB photons 1n the universe 1s given by

5 d3p 1
(271')3 eP/TCMB —1

n(TcMmB)

87T M /OO g T L(3)C(3)Tems _ 26(3)TEums
(2m)3 Jo e —1 2 2

Riemman zeta function ((3) ~ 1.202

For T=2.7 K, this give us 400 photons/cube centimeter



The Boltzmann equation simply tell us that in the absence of interaction
the number of particle 1s conserved and we have

df (z,p, 1)
dt

In case where the 1s interaction the equation 1s modified by the introduction
of a collision term

df (x,p,t)
- = Clf]

Let’s derive the Boltzmann equation follow by dark matter, starting with the
evolution of the homogeneous dark matter density, that’s the simplest
equation since the dark matter 1s supposedly non interacting,

the general relativistic version of the equation i1s given by

df (z+, P*)
dt

=0

=0

Where P* is the 4-momentum which is given in the FLRW universe

0 2 2
ds? = —dt* + a*(dz? + dy?® + dz?%) PH = (l;z> — (\/pz_,;. " )



Let’s start by expanding the total derivative into a set of partial derivative

df (z*,p*) _ Of(x*,p*) | Of(xH,p*)dx* = Of(x*,p*)dp  Of(zH,pH) dp;

dt ot S 9zt dt Op  dt op;  dt



Let’s start by expanding the total derivative into a set of partial derivative

Of (xt,pt) dz*| Of(z*,p*)dp | Of (x*,p*) dp;

Ot dt | Op  dt Op; dt

In an homogeneous Universe, this term is zero because
The distribution function can not depends on the position



Let’s start by expanding the total derivative into a set of partial derivative

Of (z+, p*) d

af(x/i,pﬂ) dﬁz

ox* dt 0p; dt

In an homogeneous Universe, this term 1s zero because
The distribution function can not depends on the position

In an homogeneous Universe, the direction of particle can not change
(geodesic are straight lines) therefore this term 1s zero



Let’s start by expanding the total derivative into a set of partial derivative

Of (zH, p*) dx

af(mli’p#) dﬁz

ox* dt 0p; dt

In an homogeneous Universe, this term is zero because
The distribution function can not depends on the position

In an homogeneous Universe, the direction of particle can not change
(geodesic are straight lines) therefore this term 1s zero

The equation simplify to  df(z*,p*)  Of(z*,p*) N of (x*,p*) dp

dt ot Op dt

dp
The only thing left to calculate is 3z which account for how the momentum of
a particle change with time in an expanding Universe



The evolution of the momentum with time can be computed from the time
component of the geodesic equation

dPH

_— _TH* pappB
T I a. ﬂP P
dp
Leading to It = —Hp
Where H = 2 is the expansion rate of the universe

a



The evolution of the momentum with time can be computed from the time
component of the geodesic equation

dPH

_— _TH* pappB
T I a. ﬂP P
dp
Leading to It = —Hp
Where H = 2 is the expansion rate of the universe
a

The meaning of this equation is to tell us that the physical momenta of particule
Decays as 1/a in an expanding universe, indeed:

po_
p a
din(p)/dt = —dlIn(a)/dt
In(p) = —In(a)+C=In(a™*)+C

p x 1l/a



The Boltzmann equation followed by homogeneous dark matter 1s therefore

of(x*, pt) N of (x*,p") dp

ot op dt 0
of(z,p*) . Of(z",p") _
ot Hp op = 0

We can integrate this over momentum in order to get an evolution equation for
The density of dark matter in the Universe

p_f 3
f )3 H/ dppaf _ 0
at (27)3" Op
on d?p 3 Of
E‘H/(zw [ary, = ¢
I SHn = 0

dt
Where the last equality follow from integration by part

This 1s a familiar result, the number density of matter decrease as the cube

Of the scale factor in an expanding Universe  dlnn 3d Ina
= — >N X a

dt dt

-3




Ok so this was for the background, but what about the dynamics of dark matter
perturbations?, we need to go back to our original Boltzmann equation, now keeping
All the terms (since perturbation unlike background can depends on (z, p)

df (z*,p*) _ of(z",p") +3f(:v“,p“) dx’ +8f(w“,p“) dp+5f(:v“,p”) dp;
dt ot ozt dt dp  dt 9p;  di

= =0
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All the terms (since perturbation unlike background can depends on (z, p)

df(a",p) _ 05", p") | 9f(a",p)ds’  Of(",p")dp
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Actually we can still drop this term since 1t’s
always second order in perturbations
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perturbations?, we need to go back to our original Boltzmann equation, now keeping
All the terms (since perturbation unlike background can depends on (z, p)

af (=", p") _ Of(z",p") | 9f(a",p") dz’ L 0f(",p")dp |Of(2¥,p") dp;

dt ot ozt dt dp  dt 9p;  di

Actually we can still drop this term since 1t’s
always second order in perturbations
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Ok so this was for the background, but what about the dynamics of dark matter
perturbations?, we need to go back to our original Boltzmann equation, now keeping
All the terms (since perturbation unlike background can depends on (z, p)

af (=", p") _ Of(z",p") | 9f(a",p") dz’ L 0f(",p")dp |Of(2¥,p") dp;

dt ot ozt dt dp  dt 9p;  di

Actually we can still drop this term since 1t’s
always second order in perturbations

To compute the rest of the total derivatives we need the perturbed FLRW metric,
ds* = —(1+ 2(x,t))dt* + a*(t)d;;[1 + 24(x, t)]|dz" dx’

After some work we get

dx’ D y

- = 2 2
dp B ' E ol
dt H + ¢lp o’ Oz



ds* = —(1+ 29 (x,t))dt* + a*(t)d;[1 + 2¢(x, t)|dx" dz’

dz’ D .
= — (] — H
o (1= +9)p
dp : E 0
= = |-[H i -
Compare this with the equation
for the background
ap
— = —H
dt P

¢ can be seen as a local perturbation of the
scale factor @ , H + ¢ play the role of
the local expansion rate



ds* = —(1+ 29 (x,t))dt* + a*(t)d;[1 + 2¢(x, t)|dx" dz’

dx’ D .
— = = (1 = + ~
o (1= +v)p
dp : E 0
= = |-[H i -
Compare this with the equation
for the background
d_p — Hp This term tell us that particule

di o gain momentum when they fall
in a gravitational potential well w
¢ can be seen as a local perturbation of the

scale factor @ , H + ¢ play the role of

the local expansion rate



Ok nearly done, the Boltzmann equation for dark matter perturbations become

0fe afcdmz | 6fcdp_
ot  Oxt dt Opdt

Ofc  Ofc p N - N | E,\iﬁ’(ﬂ- 0fe

0




Ok nearly done, the Boltzmann equation for dark matter perturbations become

8f. | 8f.dr' df.dp

ot  Oxt dt = Op dt =0

Ofe  Ofc p . _ i (B4 dyps Epd¥| 0 _

ot Ozt aE(l +9)p _(H—}-qb)p | 8wz op =0
0fc

We can simplify one step further by noticing that Qz* is of order 1
in perturbation, since the homogeneous distribution function do not
depend on positions. We finally arrive at the collisionless Boltzmann
equation that describe the evolution of dark matter perturbation

fc afc Ai — ' E 5¢ 8fc

ot | Oz aE’ (H +¢)p+ —p ox*| Op =0




fc 8fc ) - ) E 5¢ 8.fc

ot = Ozt aE — |(H+o)p+ —p ox*| Op =0

Note that here we don’t know anything about f C,

since we don’t know. anything about dark matter, apart from the fact that it’s
something non-interacting. Yet it doesn’t matter, we can integrate the equation
over momenta to turn it into an equation for dark matter perturbation, the result of
the integration 1s called the « Oth order moment of Boltzmann equation »



1 8 d3p afc
aaa:i/< m L H“b)/

1 OY d°p 8fc
a Oz / (2m)3 Op @)

This term 1s second order, because only the anisotropic
of T contribute to the integral, so the integral 1s first order,

oY

ox’

the multiplication b




o [ d3p 10 d3p afc
&/( )3f0|5(9337'/( )3fc() — H+¢)/

l aw / ddp 8fC Az
aoxt | (2m)3 8p

This term 1s second order, because only the anisotropic
of T contribute to the integral, so the integral 1s first order,

oY

ox?

o [ d3p 1 0 d3p : &p Of
&/w):%f”aaxi/( mil ‘(H+¢)/<zw>3pap =0

2
on, 1 0 d3p g ~ B
5t ' a 8mi/(27r)3fCE(p)p +3(H + g)ne =

the multiplication b




0 d3p 1 0 d3p D . - dp  Of.
&/< )?’f“aaxi/@wﬁfcmp B (H“b)/( )3pap

1 OY d>p 8fc 5
a Oz / (27)3 ap

This term 1s second order, because only the anisotropic
of T contribute to the integral, so the integral 1s first order,

oY

e make 1t second order
T

o [ d3p 1 0 d3p : &p Of
§/(2w)3f0+58xi/( mil ‘(H+¢)/<zw>3p6p =0

57%,13 d3f
ot  a Oz ()36()

The second term under the integral 1s nothing but the definition of the fluid velocities

ui:i (27r)3fc () ”i:%<%>zi<pg>

the multiplication by

P+ 3(H + ¢)ne =




Ok let’s stop here for a minute, we have derived an equation for the evolution of the
dark matter density in a FLRW universe, including the effect of perturbation

on, |
ot

0
oz’

~ 7 (new) + 3(H + $)ne = 0

The equation should look familiar 1t 1s the generalization of the standard continuity
equation in fluid dynamic

dp
ot

It tells us that dark matter density grow where the fluid flow, our version take
additionally into account the expansion of the universe.

FV-(pu) =0



Ok let’s stop here for a minute, we have derived an equation for the evolution of the
dark matter density in a FLRW universe, including the effect of perturbation

0
oz’

on, |
ot

~ 7 (new) + 3(H + $)ne = 0

The equation should look familiar 1t 1s the generalization of the standard continuity
equation in fluid dynamic

dp
ot

It tells us that dark matter density grow where the fluid flow, our version take
additionally into account the expansion of the universe.

FV-(pu) =0

We can decompose the equation into two equations, one for the background one
For the perturbation using n.(x,t) = n(t)[1 + dc(x, t)]

dn,

I H_c —
g 3HnN 0
0. 1 Ou

ot  a Oxt

-3 =0



00 1 o,
ot a Oxt

30 =0

We have an equation for é.(x,t) but it depends on u.(x, 1)
for solving the evolution of dark matter we therefore
need a additional equation for wu.(x, t)



00, 1 o,
ot a Oz’

-3 =0

We have an equation for d.(x,t) but it depends on u.(x, )
for solving the evolution of dark matter we therefore
need a additional equation for wu.(z, t)

Note that this 1s a generic feature of Boltzmann equation, while integrating
the distribution over all the momenta, we have taken the Oth moment of the
Boltzmann equation, which depends on the velocity. The equation for the velocity
can be obtained by taking the second first moment of the Boltzmann equation
which is integrating over (3, pJ

2n)3'E

In principle the equation we will derive will depends on the second moment, and so
on, there 1s an infinite hierarchy of Boltzmann equation, in practice however we
close the hierarchy using the fact that the higher moment become negligible,

In the case of the DM, the key assumption is that p/F 1s small, that is the

velocity of dark matter particule 1s small: the dark matter is cold.



Going back to our Boltzmann equation

Ofc , Ofc p 5 E ;09| 0fe
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And taking its first moment
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Going back to our Boltzmann equation

6f c 6f c A b 8770 afc
z H z —
o 4+ Bt a,E |:( + ¢)p + P 8£EZ:| op =0
And taking its first moment Second order in p/E

d d3p p? 18 i p 20 Of.
1

o d3 Az('?fc
aaxz/( )3pp7

And the two other terms can be integrated by part, finally we get

A(ncut) o nedy _
Which we can simplify using the equation on 7c
on. 1 0 : B
5 + — gl (neul) + 3(H + ¢)n. =
: J
Finally Oug CHul + 1 1 0y _ 0
ot a OxI




Going back to our Boltzmann equation

afc afc A b 8¢ afc
z H z
And taking its first moment Second order in p/E

=0

o [ d°p P 1 0 i s P’ 0f.
ot | (2n)3'E Je + E%y (H+¢)/ 21)3 2E Op
1

d®p .
O i Bf
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And the two other terms can be integrated by part, finally we get

8(ncug) i, N oY
Which we can simplify using the equation on 7c
on. 1 0 : B
5 T o 87(7%” )+ 3(H + ¢)ne =
Finall O .10
inally uCIHuJ—I— zp_o

ot © adxd

Again this look like

a standard fluid equation
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So we finally have our equations for the evolution of the dark matter, both at the
background and at the perturbation level

dn,
Hn, =
7 +3Hn 0
856’ 1 auz °
— C+30=0
Ot + a Oz’ + 3¢
o, 1 Oy
Hal
ot + U —I_a,(?xﬂ 0

What makes the dark matter special is the fact that 1t’s non interacting, if we
were to redo the computation for the baryons, we would have to include interactions
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5 — |(H
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Baryons interact through Compton scattering and Coulomb scattering

e +y¢+—e +r e +p<—e +p

Note that none of these interactions create or destroy particules, we therefore
expect that the equations describing the densities are unatfected, it 1s indeed the case

dnyp

| H_c —
g 3Hn 0
00p 1 (9u'f) :
- — 2+ 30 =0
ot a Ox* ¢

However, baryons are going to exchange momenta with photons, so the
Baryons velocity equation 1s modified

The baryons feel the radiation pressure of the photons



ok, back to the full system of equations

O +iku ©
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—32rGa’p, 0,5 ~ 0

In order to predict the CMB anisotropies we observe today

O

MR

= / . dng(n) [(©o + ) + eup] + 2 / " dn exp(—7)¢
0 0

we need to solve all of these equations jointly



The standard in the community is to use public codes such as
CAMB (fortran + python wrapper) or CLASS (C + python wrapper)

10 grrrro T

0.1 g

0.01

Wi+1)C,

Code for Anisotropies in the Microwave Background

by Antony Lewis and Anthony Challinor

Get help: | | Search | Google” custom search

Features:

e Optimized Python and Fortran code
¢ Calculate CMB, lensing, source count and dark-age 21cm angular power spectra
o Matter transfer functions, power spectra, 0g and related quanties

e General background cosmology

 Support for closed, open and flat models

e Scalar, vector and tensor modes including polarization

» Fast computation to ~0.1% accuracy, with controllable accuracy level

e Object-oriented Python and easily-extensible modern Fortran 2008 classes

» Efficient support for massive neutrinos and arbitrary neutrino mass splittings
e Optional modelling of perturbed recombination and temperature perturbations
 Calculation of local primordial and CMB lensing bispectra (Fortran)



Let’s solve the equations 1n a very simple case, let’s assume
that the Universe 1s composed of a very homogeneous
background, with, as 1nitial conditions,

a single perturbation in the middle, let’s assume that the
perturbation contains

baryons, dark matter, and photons and let’s look how 1t will
evolve according to our Boltzmann and Einstein equations



r26(r)

redshift: 93259

—— Dbaryons
—-= ¢cdm
— photons

We start with a gaussian perturbation at the center of our
reference frame
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r26(r)

redshift: 17474

I\ —— baryons
' —-= cdm
— photons

‘ Photons and baryons interact, the photon perturbation has
\_ An associated pressure that make both components move out
\ from the center
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r26(r)

redshift: 8696
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r26(r)

redshift: 4976
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r26(r)

redshift: 3273
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r26(r)

redshift: 2153

—— Dbaryons
—-= cdm
— photons

Dark matter is unaffected by pressure, but do
feel the gravitational pull of the

.'
.'
!
] :
i \, outgoing wave, the distribution of DM
,' broaden but is still peaked at the center
i \
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r26(r)

redshift: 1071

—— Dbaryons
—-= cdm
~ — photons

At redshift around 1100, protons
and electrons recombine into
hydrogen atoms and Compton

scattering become inefficient,
\ the CMB is emitted

4
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redshift: 1071

A —— baryons
|\ —-= cdm
' — photons

Remember that the equations I have
displayed are the ones we use

to explain the statistical properties
of the CMB, and give a nearly
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r26(r)

redshift: 1071

—— Dbaryons
—-= cdm
~ — photons

Here I have simplified the discussion
Only looking at one perturbation and|
by solving the equation in real space
instead of harmonic space where
\ the power spectra lives, but
the important physical phenomenon
\ wanted to illustrate is here
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r26(r)

redshift: 1071

—— baryons
—-= ¢cdm
~ — photons

/ In order to explain the statistical

properties of the CMB, you NEED
a way to separate matter between

a component that interact with
radiation and a component that

\ do not interact with radiation, both

components will leave a trace in
\  statistical properties of the CMB

\ \ through the gravitational doppler
.\. effect generated by their potential

\.\. well.
~.

‘.-.

the
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r26(r)

redshift: 1071

\
. one of the bullet cluster, but way simpi

—— baryons
—-= ¢cdm
~ — photons

The physics is therefore analog to the

—

er

\’ Because we can describe it with linea
\. \ perturbation equations, also the bulle:[
\‘ cluster is a pretty rare phenomenon
\. \vwhile this is happening everywhere
(n the primordial Universe
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r26(r)

redshift: 1071

A —— baryons
| —-— cdm
[ ~ —  photons
i , /
i \
i \‘ This is one of the reason that make
' DM essential for explaining th
| DV essential for explaining the
,' \ istical properti f the CMB
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r26(r)

redshift: 1071

—— Dbaryons

—-= cdm
~ — photons
/ You could of course still try to

modify your Einstein equation and
change gravity to explain the CMB
without dark matter, but just like in

the case of the bullet cluster, it’s highly

\ non trivial because you need gravity
to not follow matter

\
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redshift: 1071
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—— Dbaryons
—-= cdm
-~ — photons

/4 You could of course still try to
modify your Einstein equation and
change gravity to explain the CMB
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r26(r)

redshift: 704

—— Dbaryons
cdm
— photons

Back to the evolution after the
_ CMB is emitted, the photon
- - perturbation evolve outward
s while{wth baryons and DM
. are frozen, just evolving
N\ accordind to gravity
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r26(r)

redshift: 350
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r26(r)

redshift: 99
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r26(r)

redshift: 36
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r26(r)

redshift: 11
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r26(r)

redshift: O

—— Dbaryons

—-= cdm

— photons
So this is the situation today, we expect that in the

matter distribution has on average an excess
of galaxies separated by a distance of 150 Mpc.
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redshift: O

—— Dbaryons
—-= cdm
— photons

This excess called the BAO peak has been observed
for the first time in 2005 By Eisenstein,
more refined measurements exist today
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https://arxiv.org/pdf/astro-ph/0501171.pdf
https://arxiv.org/pdf/1607.03145.pdf

See you next week !



ds* = a*(n)(—dn? + dz* + dy* + dz?)
dn =dt/a

Eta conformal time while t is the cosmological time



In reality, the decoupling is not instantaneous, so we have to compute the probability
that a photon last scatter of an electron at a given time t

The probability for a photon to scatter on an electron per unit of time 1s given by

dF, scatter
dt = MNeCOT
Free electron density Thomson scattering cross section

We are interested by the probability that the photon scatters between t and t+dt, and
Then propagate freely (last scatter), it 1s called the visibility function g(t)

g(t)dt = necoT dt X Pnosca,tter(ta tO)‘

To compute Phoscatter (t;t0) we divide the time betweent and £y in a set

of n intervals 5 _ (to — 1)
L =

n

n

n
_dPs atter ti ot — T-l_ dPsca er tz' ot
Pnoscatter(t, tO) — H dPscatter 5t) He catter (ti) ~ e > im1 tter (£4)
1=1 =1

to
"I exp (— / NeCOT dt) = exp(—7)
t



The visibility function as a function of redshift is
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