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The False Positive Paradox

Gerd Gigerenzer

Breast Cancer test:

A 50-year-old woman (with no symptoms) undergoes a mammogram.

She tests positive and wants to know: what is the probability that she actually has
breast cancer?

Sensitivity: the probability that the test is positive given that the person has the disease
P(+|M) = 90%

Specificity: The probability of getting a negative test result given that the person does not
have the disease

P(—|-~M) = 91%

Disease Prevalence in the Population:

P(M) =1%

What is the best estimate of her probability of having cancer? :
A) 90%
B) 50%
C) 10%

D) 1%
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The False Positive Paradox

Gerd Gigerenzer

Breast Cancer test:

A 50-year-old woman (with no symptoms) undergoes a mammogram.

She tests positive and wants to know: what is the probability that she actually has
breast cancer?

Sensitivity: the probability that the test is positive given that the person has the disease
P(+|M) = 90%

Specificity: The probability of getting a negative test result given that the person does not
have the disease

P(—|-~M) = 91%

Disease Prevalence in the Population:

P(M) = 1%
~ P(+|M)P(M) P(+|M)P(M)
P(M|+) = P(+) o P(+|M)P(M) + P(+|-M)P(—~M)
P(4+|M)P(M) 90% x 1%

~ 9%

P(+|M)P(M) + [1 — P(—|-M)][L — P(M)] ~ 90% x 1% + 9% x 99%



Prior (prior probability): the probability assigned before any data is
observed

P(M|+)

/ \

Posterior: probability given
the test result Likelihood




Prior (prior probability): the probability assigned before any data is

observed

P(+|M)P (M)

P(M|+)

- P(+
/ Likeéood

Posterior: probability given

the test result Evidence (also called Marginal
Likelihood) The total
probability of observing the
data under all possible
hypotheses.



Random Variables and Random Fields

Sick/not sick, positive/negative are not very quantitative concepts. In
cosmology, we tend to study variables taking valuesin [R or N we use
probability densities, for example:

P(TCMB |dcobe)
P(thQ, Qbh27 Ns, A87 9MC7 T, W0, Wa, Z mV|d003m010gy)

Cosmology also studies stochastic fields, where the concept of
probability is generalized to an infinite number of random variables.

PloTems(7)], Plp(Z)]
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Properties

/’Px Pla < X <b)

PX( )dz =1

—0O0

Moments of a random variable

_ 00
Mean EX)=(X)=X=u= /_ rPx(z)dx
Variance V(X)=0?=E[(X —E(X))?] = /+Oo(a; — 1)*Px(z)dx

Xy E
k v1 =K ( >
Skewness \ o _ \ 0 For a Gaussian

_ 4 random variable
Kurtosis vy =E (X_“> -3 /




Non-Gaussianity

Asymmetric Normal
Distribution
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Interlude : In practice, we often do not know a priori the
probability density of a physical process, but we can infer
it from the measurement of its moments

Planck
data

—500 T BN 500 uK

The calculation of the moments of CMB temperature anisotropies
indicates a Gaussian distribution, in particular

(0T (71 )0T (712)0T (ag)) ~ 0O



Interlude : In practice, we often do not know a priori the
probability density of a physical process, but we can infer
it from the measurement of its moments

Planck
data

—500 T BN 500 uK

The calculation of the moments of CMB temperature anisotropies
indicates a Gaussian distribution, in particular

(0T (71 )0T (712)0T (ag)) ~ 0O

> Indication in favor of inflation and constraints on models



Cumulative distribution function

Cumulative distribution function
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Cumulative distribution function

Complementary cumulative distribution function
Fx(x) = P(X > ZIZ) =1-— Fx(x)

\

Tall distribution
Exceedance
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Example I: The Hubble constant Problem

HE'ank  — 6736 4 0.54 km/s/Mpc
Hpiess = 732+1.3 km/s/Mpc

Are these two measurements in agreement or in disagreement?
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hypothesis) that the two measurements are unbiased, independent, and

that the probability distribution associated with each measurement is
Gaussian.



Example I: The Hubble constant Problem

HE'ank  — 6736 4 0.54 km/s/Mpc
HpUess = 732+ 1.3 km/s/Mpc

Are these two measurements in agreement or in disagreement?

To quantify this, let’s start from the hypothesis (also called the null
hypothesis) that the two measurements are unbiased, independent, and

that the probability distribution associated with each measurement is
Gaussian.
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E | AR
M o s
Planck 4 | NN 2<(<801 NN 802< /(<2508
HO k. ,
Posterior C1 AN
!\' n' '\‘
Fleli |
Y |

A A A A I 1 AL AR\ N4
60 64 68 72 76 075 0.78 081 0.84 0.87
Ho



Example I: The Hubble constant Problem

Let us define the new random variable

L Riess Planck
It follows a distribution

Gaussian : Any linear combination of independent Gaussian random
variables follows a Gaussian distribution

With zero mean : Under our hypothesis that the two measurements
are unbiased

And variance : UQ(AHO) — UZ(HSHGSS) + 02 (Hg)lamk)

P(AHy) = G(0,0°(AHp))
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Example I: The Hubble constant Problem
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Example I: The Hubble constant Problem

HE'ank  — 6736 4 0.54 km/s/Mpc

HpUess = 732+ 1.3 km/s/Mpc

Are these two measurements in agreement or in disagreement?

What is the probability, under the null hypothesis (that the two
measurements agree), of obtaining a value more extreme than
the one observed?



What is the probability, under the null hypothesis, of obtaining a value more
extreme than the observed one?

FAHO(SE) = P(AH() > CIJ)

T 1 ZE,Z ,
1 —/ exp | — dx
—oco OAHyV 2T QO'ZAHO
1
= 1-— 5 (1 + erf (x/\/ﬁaAHO))

P(AH) FaH,

1071

] 1071 1
1072 3
103 - 10-3
1074 3
10-5 107 1
1076 1

E 10—7 N
1077 5

8 -6 -4 -2 0 2 4 6 8 8 -6 -4 -2 0 2 4 6 8

P(AHy >5.84) = 1.67x107°



What is the probability, under the null hypothesis, of obtaining a value more
extreme than the observed one?

B T 1 117,:2
Fap (z) = P(AHy >7) = 1-— / exp [ — da!
° —oo OAH,V 2T QUQAHO

= 1-— % (1 + erf (CU/\/§0'AHO))

P(AHg) FaH,

1071
] 1071 1

1072 3
-3 J

10 10-3 4

1074 3

105 107° 1

107° 3

] 10-7 1
1077 5

Tail distribution
Exceedance
One sided p-value
Survival function
Reliability functio

P(AHy >5.84) = 1.67x107°
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What is the probability, under the null hypothesis, of obtaining a value more

extreme than the observed one?

The test could have fluctuated in either direction, so "more extreme »

should be understood in terms of the absolute value.

P(AH )

P(|AH, | > 5.84)

3.34 x 107



10-1é
10-2é
10-3é
10-4é
10-5é
10-6é

1077 4

What is the probability, under the null hypothesis, of obtaining a value more

extreme than the observed one?

The test could have fluctuated in either direction, so "more extreme »

should be understood in terms of the absolute value.

P(AH )

P(|AH, | > 5.84)

The null hypothesis is therefore extremely unlikely

= New physics ??
= Problem with one of the two measurements ?

3.34 x 107



What is the probability, under the null hypothesis, of obtaining a value more
extreme than the observed one?

We have detailed this for pedagogical reasons,
but a very simple algorithm can be used.

HE'ank  — 6736 4 0.54 km/s/Mpc
Htess 73.2 £ 1.3 km/s/Mpc

1) Calculate the number of sigmas between the two measured values
| Hé%iess . H(l;lanckl

N, =
\/ 0.2 ( H(])F{iess) i 0.2 ( Hg’lanck)

2) The probability for two measurements to be N, apartis given by

P(|AHy |/o(AHo) > N,) = 1—erf (%)

— 3.34x10°°



X2 statistics



Chi-squared statistics is very commonly used in cosmology

It Is notably used to assess the goodness of fit of a model to observed
data, the statistical consistency of a dataset, and is also employed

in the context of model selection.

N 2
2 dz — Ty
X = py
i=1 ¢
Model
Data
Error

In the case where the measurements are not independent,
a covariance matrix will be used:

x> = (d-m)'C'(d—m)



Example Il: Interpretation of Chi-squared Tests

g , 10 A&A 641, AS (2020)

; , https://doi.org/10.1051/0004-6361/201936386

] [ 70 © Planck Collaboration 2020
% 0 [

-140
|t ity
log(.ﬁ) X eff N dof
TE, full, binned . ............ 30-1996 —428.68 857.36 762

‘Is the ACDM model a good fit to the Planck TE power spectrum data?’



Example Il: Interpretation of Chi-squared Tests

1“0 A&A 641, A5 (2020)
[ https://doi.org/10.1051/0004-6361/201936386
[ 70 © Planck Collaboration 2020
“g [
% [
B o WH et S il |
5 - b RIS i e GRS G : )
log(£) Xof N dof
TE, full, binned ............. 30-1996 —428.68 857.36 762

‘Is the ACDM model a good fit to the Planck TE power spectrum data?’

What is the probability, under the null hypothesis (that the ACDM model is
correct), of obtaining a value more extreme than the observed chi-squared

value for the Planck TE power spectrum?



Example Il: Interpretation of Chi-squared Tests

2
The probability distribution of the value of a X statistic wit k degrees of

freedom is the distribution of the sum of the squares of k Gaussian
random variables

. 1 —x/2 _k/2—1
P (2 8) = Sk (o) © o

Talil distribution
Exceedance
One sided p-value
Survival function
Reliability function

We will use our famous and compute

P(x* > 857.36;k = 762)



Example Il: Interpretation of Chi-squared Tests

2
The probability distribution of the value of a X statistic wit k degrees of

freedom is the distribution of the sum of the squares of k Gaussian
random variables

. 1 —x/2 _k/2—1
P (5 8) = Sk (/) o

Talil distribution
Exceedance
One sided p-value
Survival function
Reliability function

We will use our famous and compute

P(x* > 857.36;k = 762)

thibautlouis®@mbp-de-thibaut ~ % ipython

Python 3.7.6 (default, Dec 22 2019, 01:09:06)

Type 'copyright', 'credits' or 'license' for more information
IPython 7.12.0 —— An enhanced Interactive Python. Type '?' for help.

In [1]: from scipy.stats import chi2

In [2]: print(1 - chi2.cdf(857.36, 762)) > ~ 10
0.009025337969493563 p 1 /0




Example Il: Interpretation of Chi-squared Tests

We have therefore answered our question:

What is the probability, under the null hypothesis (that the ACDM model is
correct), of obtaining a value more extreme than the observed chi-squared
value for the Planck TE power spectrum?

p~1%



x> /DoF

A commonly used criterion is that the reduced chi-squared values should
be close to 1. « Close" is highly dependent on the number of degrees of
freedom considered.

40 1

P(x2/DoF > 1.05) (%)
(-] = N N w W
© v o ¢ o

Ul

10 200 500 1000 2000 3000
DoF

For 10 degrees of freedom, it is quite likely to
have a reduced chi-squared greater than 1.05.
This is much less likely for 3000 degrees of freedom



TABLE 3

bl NULL TESTS USING cUSTOM MAPS (PA1, PA2)
Jackknifes

Test Spectrum PA1 PA2
x?/dof P.T.E x?/dof P.T.E
Scan pattern 1 TT 0.82 0.83 1.00 0.47
v Scan pattern 2: EE 0.91 0.66 0.72 0.94
(0-1)x(2-3) TE 0.99  0.49 0.80  0.85
TB 1.13 0.25 0.86 0.76
2 EB 1.15 0.21 0.93 0.61
X BB 0.66 0.97 0.83 0.81
S tt 1 TT 1.13 0.24 1.19 0.17
In cosmology tests are also Scan pattern 1 I
- . . (0-3)x(1-2) TE 0.99  0.50 0.83  0.80
used in the context of jackknifes IB 0% 077 081 044
BB 0.96 0.55 0.75 0.91
(also called null tests), a set of tests I - B
- - = - Fast v slow EE 0.78 0.88 0.72 0.94
in which the data are split according o 094 059 08T o7
TB 1.07 0.34 0.78 0.88
- - - - EB 0.81 0.84 0.68 0.96
to various criteria to verify BB o2 042 100  os
H PWYV: TT 0.99 0.49 1.18 0.18
the Stablllty Of the reSUIt: High v low EE 0.84 0.78 0.90 0.68
TE 0.72 0.94 0.71 0.94
TB 0.75 0.91 0.77 0.89
EB 0.98 0.52 0.96 0.56
BB 0.65 0.98 0.94 0.60
Pick up: TT 1.14 0.22 0.94 0.61
EE 0.83 0.81 0.64 0.98
TE 0.87 0.74 0.88 0.72
TB 0.83 0.80 0.95 0.58
d d 2 EB 0.64 0.98 0.95 0.58
2 o first—half second —half BB 100 047 083 081
— M : TT 0.82 0.82 1.08 0.32
X null O-( Ad) more aggressive  EE 1.40 003 118  0.17
cut TE 1.30 0.07 0.68 0.97
TB 0.92 0.64 0.91 0.66
EB 1.01 0.45 0.96 0.55
BB 0.90 0.67 1.22 0.13
Walfers: TT 1.02 0.44
Hex1+hex3 EE 1.08 0.33
v hex 2+4semis TE 1.29 0.07
TB 0.59 0.99
EB 1.03 0.42
BB 0.54 0.99

https://arxiv.org/pdf/1610.02360.pdf



ull

Look elsewhere effect

Let us imagine conducting a large number of tests on a dataset.

2
We plot the X values and their associated probabilities
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ull

Look elsewhere effect

Let us imagine conducting a large number of tests on a dataset.

2
We plot the X values and their associated probabilities

\ | J\//\/\ﬂ/\ |

LN 1IN

/ P(X? > Xfesure) (%)

. 3‘0 4‘0 SIO 6'0 7‘0 (') 1'0 2|0 / 3‘0 4‘0
index du test index du test

P = 0.5%, have we detected a problem ?



Look elsewhere effect

(multiple comparisons, multiplicity or multiple testing problem)

We performed 70 tests. What is the probability that at least one
of the tests has a p-value less than 0.5%?
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(multiple comparisons, multiplicity or multiple testing problem)

We performed 70 tests. What is the probability that at least one
of the tests has a p-value less than 0.5%?

To calculate it, let’s break down the different possibilities:

1) a null hypothesis test has a probability greater than 0.5%
2) a null hypothesis test has a probability smaller than 0.5%



Look elsewhere effect

(multiple comparisons, multiplicity or multiple testing problem)

We performed 70 tests. What is the probability that at least one
of the tests has a p-value less than 0.5%?

To calculate it, let’s break down the different possibilities:

1) a null hypothesis test has a probability greater than 0.5%
2) a null hypothesis test has a probability smaller than 0.5%

The probability of obtaining a p-value < 0.5% in 70 tests (hold on tight)
Is therefore calculated using the binomial distribution.

p=1—(0.995)"test = 30%

This effect has been the cause of several false detections in physics.
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Look elsewhere effect

(multiple comparisons, multiplicity or multiple testing problem)
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As a general rule, one always
wants to analyze the result

of a test in the context of the
number of tests performed.

For example,

one can compare the histogram
of the tests conducted

with the expected distribution.



Model Comparison

An example: The HO Olympics, a fair ranking of proposed models
https://arxiv.org/pdf/2107.10291.pdf

Is the fit of a particular physical model M significantly better
than ACDM?

Akaike Information Criterion (AIC)

AAIC = Xzin M — XminacoM + 2(Nag — Nacowm)



Model Comparison

An example: The HO Olympics, a fair ranking of proposed models
https://arxiv.org/pdf/2107.10291.pdf

Is the fit of a particular physical model M significantly better
than ACDM?

Model ANparam Mg %i‘;ii“ %ﬁ:ﬁ Ax? AAIC Finalist
ACDM 0 —19.416 +0.012 4.40 4.50 X 0.00 0.00 X X
AN, 1 ~19.395+0.019  3.60 390 X | —460 -260 X | X

SIDR 1 —19.385 £ 0.024 3.20 3.60 X —3.77 —-1.77 X X

DR-DM 2 —19.413 £ 0.036 3.30 3.40 X —7.82 —-3.82 X X

mixed DR 2 —19.388 +£0.026 3.20 3.70 X —6.40 —-240 X X

SIv+DR 3 —19.440 £ 0.038 3.70 3.90 X —3.96 244 X X

Majoron 3 —19.380 £+ 0.027 3.00 2.90 v | —13.74 7.1 v v

primordial B 1 —19.390 = 0.018 3.90 3.00 X | —10.83 —-883 V v @

varying me 1 —19.391 £0.034 2.90 3.20 X —9.87 —7.87T v v @

varying me+Qx y ~19.368 +£0.048  2.00 170 v | =16.11 —12.11 v

EDE 3 —19.390 £0.016 3.60 1.60 v | —20.80 —-14.80 V v

NEDE 3 —19.380 £+ 0.021 3.20 2.00 v | —-17.70 -11.70 V v

CPL 2 —19.400 £ 0.016 3.90 4.10 X —4.23 —-0.23 X X

PEDE 0 —19.349 +0.013 2.T0 2.00 v 4.76 476 X X

MPEDE 1 —19.400 + 0.022 3.60 4.00 X —2.21 —-0.21 X X

DM — DR+WDM 2 —19.410 £+ 0.013 4.20 4.40 X —4.18 —0.18 X X

DM — DR 2 —19.410 £ 0.011 4.30 4.20 X 0.11 411 X X




Interlude
Johny Von Neumann: With four parameters I can fit an
elephant, and with five | can make him wiggle his trunk

Author: Piotr A. Zolnierczuk (zolnierczukp at ornl dot gov)

Based on a paper by:

Drawing an elephant with four complex parameters
Jurgen Mayer, Khaled Khairy, and Jonathon Howard,
Am. J. Phys. 78, 648 (2010), DOI:10.1119/1.3254017 80

won

import numpy as np
import pylab

pl, p2, p3, p4 = (50 - 30j, 18 + 8j, 12 - 10j, -14 - 6037 )
p5 = 40 + 20j
def fourier(t, C): 40
f = np.zeros(t.shape)
A, B = C.real, C.imag
for k in range(len(C)):
f = f + A[k]*np.cos(k*t) + B[k]*np.sin(k*t) 20

return f

def elephant(t, pl, p2, p3, p4, p5):
npar = 6 0 =
Cx = np.zeros((npar,), dtype='complex')

Cy = np.zeros((npar,), dtype='complex')

Cx[1] = pl.real*1j __20 -
Cx[2] = p2.real*1lj
Cx[(3] = p3.real

Cx(5] = pd.real

—40

Cy(l] = pd.imag + pl.imag*1j
Cy(2] = p2.imag*1lj

Cy[3] = p3.imag*1lj

X = np.append(fourier(t,Cx), [-p5.imag]) —60
y = np.append(fourier(t,Cy), [p5.imag])

return x,y _'60 _'40 _'20 O 20 40 60

X, y = elephant(np.linspace(0,2*np.pi,1000), pl, p2, p3, p4, pP5)
pylab.plot(y,-x,"'.")
pylab.show()

https://gwang.umn.edu/story/2020/03/20/How-to-fit-an-elephant.html

80




2
X is not enough

3- x%/DoF = 0.94 (DoF: 100)

: | | ||

(data-model)

0 20 40 60 80 100

| x2/DoF = 0.94 (DoF: 100)

(data-model)

-1 1

A visual inspection of the residuals between data and
model is always very useful.



10.002

The devil you know and the one you don’t know
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BICEP? findéfirst direct evidence of cosmic inflation

17 Mar 2014 Tushna Commissariat
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The
BICEP2 team assumed a polarization fraction of 5% for dust in their field, based on a
preliminary map presented at a conference [9]. A visual comparison of this map with the
new version in [7] suggests that there is imperfect agreement between the two in many regions
and that the polarization fractions are significantly higher in the new maps relative to the
old ones. One reason for the discrepancy is the CIB, which was not corrected for in the
old maps; since CIB is not polarized correcting for it reduces intensity but not polarization,
increasing the polarization fraction.



Multivariate Probability
Functions



Joint Probability Function

We will often have to study problems described by a large number of
parameters (a large number of random variables (X1 ,..., XN ).

We will therefore introduce the joint probability density:

Px, . xyn(@1,...,ZN)

/d:l:l . dzNPx, . xn(@1,..,2N) =1

We will have the joint cumulative distribution function (CDF).

FX1,..,XN($17 ...,ZIJN) = P(X1 < L1, ...,XN < £I?N)



Useful Definitions I: Marginal (Distribution)

The marginal probability distribution is defined as
PXz(sz) = /dil?l d$i_1dwi+1 dZENPXl, ,XN(Zbl, ,ZEN)

We can also marginalize over a subset of random variables.

Px,. .. x;(T1,...,2;) = /de’iH . dzNPx, . xy(T1, oo ,TN)

For independent random variables, the joint probability distribution is the
product of the marginals.

N
Px1,..xx (@1, zn) = | [ Px. (2:)
i=1



Useful Definitions Il: Conditional (Distribution)

The conditional probability distribution is defined as

7D‘Xﬂ)(l, e Xi—1, X415 - ,XN(xi‘xla vee gy Lg—1y Lg41,y --. 7xN)
Px, .. xny(@1, oo ,ZN)
PXl, oo 3 Xi—1, X041, .- ,XN(CB:l) cvoe Lg—15 Li+1,y --- 7£EN)

(P(A,B) = P(A|B)P(B) = P(B|A)P(A))

We can also condition a subset of random variables on another subset.

Px,. .. xy(@1, «.. ,ZN)
7DJ(’L—|—17 )XN(xZ'i_]-? te 7mN)

Px,..x, 1 Xit1,00, XN (1,0 Ti|Tig1, ., TN) =



Useful Definitions Ill: Covariance Matrix

The covariance matrix of a random vector is defined by
YNig = (@i — () (= — (5))) = (@iz;) — (2i)(z;)

The Pearson correlation coefficient (correlation matrix) is given by

i
Pij — \/Zm ZJJ

-1<p;; <1




Planck correlation matrix
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Two remarks :

RN

Independence Uncorrelated

Yij = (x5 —(z:))(x; — (5)))



Two remarks :

RN

Independence

N

Uncorrelated



Two remarks :

RN

Independence Uncorrelated

N

dwidxjxiijXi,Xj (xia wj)

N
8
™.
N’
M
[

dwida:ja:ia:j’PXi (SIIZ')'PXj |X'i (ZEj |£Bz)
d:l?z'dCCjCCiinPXi (332')5(333' _ 9(332))

dx;xig(x;)Px,(z;)

— — — —_

If g and P are even functions and the integration domain is symmetric
around zero
% =0



Two remarks :

Correlation Causality
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Multivariate Normal
Distribution



A particularly useful multivariate probability distribution is
the multivariate normal distribution.

1 1 _
Pxi,..xn (%1, .., oN) = Px(x) = (27r)N/2\/det—EeXp —5(5'3 -p)' =z - p)

It is notably the form of many likelihood functions in cosmology.



A particularly useful multivariate probability distribution is
the multivariate normal distribution.

1 1 _
PXl,--,XN(x17 veey mN) — PX(w) — (27T)N/2\/meXp _i(m — I"’)TZ 1(33 — ”’)

It is notably the form of many likelihood functions in cosmology.

If the data take the form

di = M;({0}) + n;

/ .

Model Gaussian noise with mean 0 and covariance Mj = (nm])

1
(2m)N/2+/det N

L(dI{6)) = exp |~ [d — M({6))]"N ' d — M({6})]




To obtain the marginal distribution of a subset of normal random variables,
onhe only needs to “remove” the variables over which we marginalize from
the mean vector and the covariance matrix.

1 1 _
PXlr-,XN(xl? ey CEN) — PX(QU) — (27T)N/2\/dﬂ]—zexp |:_§(w o M)TZ l(w o p’)

H1 (Z11 12 Ziz . Tiv )
= 12 5 291 2299 2293 ... 29N
1N \Zn1 EZne ZN3 . Sy

l

/dxgd:c4 . dNPx,. .. xn(@1, oo ,ZN)
1 1 T -
= exp [——(w — ) Xz - u)]

2V det 2 2

- 1 ~ 211 2413
_ $
K <#3) (231 233>

Px, xs(x1,23)




An application of marginalization:

Visualization of ellipses
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An application of marginalization: Visualization of ellipses

Let’s write down the posterior distribution of cosmological parameters

P(Qm, QA, ns, T, As, Qb)
The marginal distribution for Omega matter and Omega Lambda is

P(Qn, W) = / dnsdAsdTdQ%P(Qm, Qn, 1, T, As, )

— ! exp {—l(m —p)'S (z - ﬁ)]

oV det 3 2

~ Qm) ~ 20, Q.. 2. O )
Il,: — Z: meém myGA
(QA (EQAQm 210 QA



An application of marginalization: Visualization of ellipses

P(Qm, W) = / dnsdAsdrd%P (U, Qa, 1s, T, As, Q)

— ! exp [—l(m —p)'E (z —- ﬁ)]

oV det 3 2 /

~

The quantity X2 = (x — ﬁ)Ti_l(m — [t)

Follows a chi-squared distribution with two degree of freedom

We want to visualize the set of x values that have a probability greater
than 5%, we need to find the value of y such that

P(x“por () < y) = 95%



We use the Percent Point Function (also called the quantile function).

In [1]: from scipy.stats import x*

In [2]: chi2.ppf(0.95,2) < 95%,
Out[2]: 5.991464547107979

In [3]: chi2.ppf(0.68,2) < 68%
Qut[3]: 2.27886856637673

x values with a probability greater than 5% will satisfy
~N T S—1 ~
(x—fp)" X " (x— @) < 5.9915

It can be shown that the contour enclosing this set of x values

Is an ellipse with axes

pn ++/5.9915)\e;

With A; the eigenvalues of the covariance matrix and

e; Iits eigenvectors



An application of marginalization: Visualization of ellipses
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Cosmological random
fields



From the point of view of our cosmological models, the observed
distribution of galaxies, as well as the observed temperature and
polarization fluctuations of the cosmic microwave background, are
contingent. Our models do not predict the specific values taken by these
observables — they only predict their statistical properties.

-450 450

“Same universe” from the ACDM point of view
These observables are therefore promoted to the status of random fields.



We can generalize the concept of random variables to that of a random
field. Imagine a set of random variables defined at each point
of a grid with a given spacing.

ZARR

f(z1) f(xz2)

By denoting fr» = f(¥n) one can define avector f of nrandom
variables.

Its associated probability distribution is L F P}

The random field can be defined as the continuous limit
In which the grid spacing tends to zero.



n-point correlation functions

By analogy with the moments of a random variable, one can define the n-
point correlation functions of the field. f( :B)

§(m1,a:2,...,a:n) — Hf(a:z)
1=1



The cosmological principle assumes that the statistical properties of the
Universe on large scales are homogeneous and isotropic.

Homogeneity

(f(®1)...f(xn)) = (f(x1 + b)...f(Tn + b))

Isotropy

A field is isotropic around a point z If

£(x1,x2,...,Tn) = E(xy,x5,...,x))
x’ z+ R(x — z)



A prediction of the simplest inflation models (and widely confirmed by
Planck) is that the initial fluctuations follow a Gaussian distribution.

exp [—%(5i)TC_15i]
v/ det(2mC)

All the information about a Gaussian field is contained in its covariance
matrix (its two-point correlation function).

Cim = <5i (wl)5i (Tm))

P(d;) =



A prediction of the simplest inflation models (and widely confirmed by
Planck) is that the initial fluctuations follow a Gaussian distribution.

exp [—%((V)TC_lJi]
v/ det(2mC)

All the information about a Gaussian field is contained in its covariance
matrix (its two-point correlation function).

Com = (0"(®1)8"(@m))
A linear combination of Gaussian fields follows a Gaussian distribution.
5TCMB(Z — 1100) — .Fl (57:, ’Ui)

JF1 is a functional that represents the evolution of the density contrasts
generated by inflation up to the emission of the CMB

P(d;) =

om(z=0) = Fp(8",v") + NL

Non-linear phenomena (such as gravity) generate
non-Gaussianities; nevertheless, even in this case,
the two-point correlation functions contain a lot of information.




Covariance Matrix

Cim = (0(x1)d(Tm))



Covariance Matrix

(0(x1)0(2m))
g(ml — mm)

AN

Homogeneity
The covariance matrix depends only on the relative positions.



Covariance Matrix

(0(x1)0(xm))
g(wl — mm)
E(|zr — xim)

Isotropy
There is no directionality in the correlation matrix.



Covariance Matrix



Covariance Matrix

Cim = (0(x1)d(Tm))
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https://arxiv.org/pdf/1203.6594.pdf



Covariance Matrix

Com = (0(21)0(2m)) Cim = (0T(131)0T (um))
iBl—me) — €(ﬁlﬁ'm)

(
= &(|z — zm)) = &(0)
(

CMB temperature angular
correlation function
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To represent fields in three dimensions, the Fourier space is often used.

/dw&(w)eik“’
o(x) = / (::)35(16)6_2"“’

The analogue of the correlation function is the power spectrum. P(k)

S,
~~

2y
—

|

P(k) = / dre* "€ (r)

Fourier space presents advantages

1) Theoretical calculations of the evolution of perturbations are
traditionally performed in Fourier space.

2) The basis represented by the Fourier modes diagonalizes
the covariance matrix.

3) Il It is natural to implement "scale cuts."



CDM power spectrum
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Correlation function in Fourier space

(B(R)5(g)") = ( / dws( / dy5(y)e i)
dxdy(6(x)d(y))e!kz—ay)

/dmdy§ T —y)e el(kz—qy)



Correlation function in Fourier space

(0(k)d(q)")

( / daes () e* / dys(y)e9Y)
/ daedy (6(x)8(y)) e’ o—av)

[ dady(a — et

Jacobi coordinates

r = xTr—y
x. = (x+1y)/2
1
(k—q)xz. = §[kw+ky—qw—qy]
k + 1
( 2q)r = 5[km—ky+qa:—qy]

(kx —qy) = (k;q)r-i- (k — q)x.




Correlation function in Fourier space

(0(k)d(q)")

_ / 426 () / dys()e—i9Y) Jacobi coordinates

= / dacdy(5(x)d(y))e k*—av) a:r - :(nw—+yy)/2

- / dxdyé(z — y)e k=) (k—q)ze = ~lka+ky—qz—qul
- / d el e / dre(r)et 30T kra), - z[km — ky +qz — qu
= (2m)°4(k — q) / dré(r)e®” (kx — qy) = (k “ZL 9, (k — q)ze

= (2m)’3(k — q)P(k)

Different Fourier modes are independent



Angular power spectrum

On the sphere, the harmonic basis is the basis of spherical harmonics.

Yom (1)
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Angular power spectrum

One can define an angular power spectrum as well as an angular
correlation function.

Legendre polynomial
(agma}‘/m/> — 5@6’5mm’cﬁ /
=20+ 1
p— P
£(0) ) 4 Puleos0)Cy

£=0




Angular power spectrum

One can define an angular power spectrum as well as an angular
correlation function.

(Gema, 1) Somb Legendre polynomial
I Ui m! — 20 Omm/' Ly /
20 +1
£(0) = Z ym Py(cos 0)Cy
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Estimation of the angular
power spectra of the CMB



The angular power spectrum definition is

(@em@p ) = 000 0mm Co
We can define and estimator o 1 i: I
——

Where the %/m are computed from

im = [ ST ()di



Numerics :

import healpy as hp
import pylab as plt
import numpy as np

cmb_map = hp.fitsfunc.read_map("cmb.fits")
alms = hp.sphtfunc.map2alm(cmb_map)
cls = hp.sphtfunc.alm2cl(alms)

00 N O O &~ WO N -

-511.553 541.522

6000 -
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When defining an estimator of a statistical property, one must
always answer (at least) two questions:

-> is the estimator biased ?
-> what is its variance ?



Bias

An estimator is unbiased if the ensemble average of the estimator equals
the quantity one wishes to estimate

(Ce) = Cy
We can check whether this is the case for our estimator
1
A 1
C) = Qoo Q)
‘ 20+ 1 Zf fmem
m=—

/
R 1 .

m=—/

1 V4
T o2w+1 > Ci

m=—

Cy



Numerics :

nside = 512
nsims = 100
cl list = []
for 1 in range(nsims):
print(i)
cmb_sim = hp.sphtfunc.synfast(cl_th, nside=nside) #generate simulation
alms_sim = hp.sphtfunc.map2alm(cmb_sim)
cls_sim = hp.sphtfunc.alm2cl(alms_sim)
cl list += [cls_sim]

mean = np.mean(cl list, axis=0)

5000 A

4000 -
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We can also compute the variance of this estimator

02(Cp) = ((Co— Cp)?) = (CF) —2C(Cy) + C7 = (C}) — CF



00000

00000

We can also compute the variance of this estimator

o?(Cp) = ((Co— C)?) = (C}) —2C(Cy) + C; = (C}) — C}

A

We now need to compute (C7)

14 14
A 1
D=(31) 2 > (aumt i)

m=—~—F m'=—




To compute this term, we will use several properties.

A2
(C7) = (2[ +1) Z Z (@em Qg Qe Apyy )

m=—~—fm/=—

1) Linear transformations of Gaussian fields follow Gaussian statistics.

otm = / ST (7)Y gsy () di

N\

Gaussian



To compute this term, we will use several properties.

A2
(C7) = (% +1) Z Z (@em Qg Qe Apyy )

m=—~—fm/=—

1) Linear transformations of Gaussian fields follow Gaussian statistics.

A / ST (7)Y, (7)di

/ AN

Gaussian Gaussian



To compute this term, we will use several properties.

A2
(C7) = (% +1) Z Z (@em Qg Qe Apyy )

m=——Lm/'=—/¢

1) Linear transformations of Gaussian fields follow Gaussian statistics.

A / ST (7)Y, (7)di

/ AN

Gaussian Gaussian

2) The Wick theorem



The Wick theorem

The N-point function of a Gaussian field can be decomposed
into a sum of products of two-point correlation functions.

B X1 X X,]= ) || BIX:X;]=)_ ][] Cov(Xi,X;)

pEP,% {ZJ}Ep pEP,% {Z,_]}Gp

The sum is taken over all pairings of (1...n)

In the case of a four-point correlation function.

(X1 X0X3Xy) = (X1 Xo (X3Xy) + (X1 X3 (X0 Xy) + (X1 X4)(X2X3)

1 3 1 3 ] 3
® @ 1 @ ® 3 ®
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14
Z WomQm ) (Qem/ Upny) + (Qemem/ ) (Qpm Ay ) + (Qem Q) (A Q)

/
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Ci + Ciom,—m + Cpomm
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14
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m=—~—fm'=—/4
1 14 14 ) ,
— m m;ﬁ mlzz:_g Cg + Cg 5m —m/ + Ce
= Cit g G
2(/ 2 2 2 2
0°(Cy) = (Cy) = C; Ci

)+ (@em @ (A Q)



M~

(#+1)
1 \? &
B (ze—l) Do Y (am@hn)(Gem ) + (atmGtm ) (WG + (W) (@@
( 1) Z Clg + Cl?dm,—m’ + C(?(Sm,m’
2

m=——0m/'=—¢
= Cit 5
2/ A A2 2 2 2
0°(Cy) = (Cp) — Cf = 5+ 1Ce

This term represents the uncertainty inherent to any measurement of the
power spectrum; it is known as cosmic variance and is irreducible.

Our measurement is intrinsically limited by the fact that

we have access to only a single “realization” of the Universe.



nside = 512 .
nsims = 100 I\l n
Cl_liSt - [] umerlcs |
for i in range(nsims):
print (i)
cmb_sim = hp.sphtfunc.synfast(cl_th, nside=nside) #generate simulation
alms_sim = hp.sphtfunc.map2alm(cmb_sim)
cls_sim = hp.sphtfunc.alm2cl(alms_sim)
cl 1list += [cls_sim]

mean = np.mean(cl_list, axis=0)
var = np.var(cl_list, axis=0)

var_analytic = 2 / (2 x 1_th + 1) % cl_th *x 2

107 -

-—= 2/(21 + 1)C12
—— Vvariance (sim)
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2 2

o(Cr) = (C3) - CF = 5;-—Ci

The denominator is the number of modes: the number of “m” for each “l.”

A 2
U(Ce)=\/N ; Cy

There is an analogue of cosmic variance for the three-dimensional
matter power spectrum.




Noise bias

In reality, every observation is affected by sources of noise.
6T°P5 () STMB(7) 4+ n(d)
il = [ ST () di

obs CMB
Aoy — Oy T Nem

Noise will bias the estimator and increase its variance.
¢

A 1
b . b bs,*\ CMB
(C>) = 2£+1Z<a2m8a2m8>— o TN
m=—~
Ny = (ngmnyy,)
2(O9%) = — = (Cy+ Ny)?
20 4+ 1



Noise bias

In reality, every observation is affected by sources of noise.

5Tobs ( ’f),)

obs
Apm

obs
Apm

STMB(7) 4+ n(d)
/ ST (R)Y,: () dh

CMB
Apm + Tm

Noise will bias the estimator and increase its variance.

(C8™)

Ny

A

0_2 (Cgbs) —

14

1 b bs,*
LS (g
m=—~
<n€mn2m>
2 (Cp + Ny)?
Top41 T

) =

7P+ N

Note that when N2 =0, we recover

The cosmic variance.
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21

nside = 512 Numerics

nsims = 100

cl_list = []
for 1 in range(nsims):
print(i)

cmb_sim = hp.sphtfunc.synfast(cl_th, nside=nside) #generate simulation

cmb_sim += np.random.randn(cmb_sim.shape[0])*50 #add noise
alms_sim = hp.sphtfunc.map2alm(cmb_sim)

cls_sim = hp.sphtfunc.alm2cl(alms_sim)

cl list += [cls_sim]

mean = np.mean(cl_list, axis=0)
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Noise bias

In reality, every observation is affected by sources of noise.

5T () ST MB(7) + n(d)
il = [ ST () di

obs CMB
Aoy — Oy + Tm

We can debias the power spectrum estimator in different ways:
¢ Subtracting a noise model built from our knowledge of the instrument

¢ Performing cross-correlations



Cross-correlations




Cross-correlations

obs . CMB
a1 pm = Qpy T Nigm
obs CMB

a2 g, = Qpy T N24m
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Cross-correlations

2

Variance o2(C9P) = Y (Cg? + 2Cy Ny + 2N£2)
Vs
2 ( /obs 2 2
o (Cg )_ (C£+N£)

2w +1



Cross-correlations

2

Variance o2(C™) = Y (C7 + 2C,N; + 2Ny)
Vs
obs 2 2
o*(C) = 20 1\Cet No)

In general, for K data splits
0

1 1
obs L Qbs Qbs,* _ CMB

177 m=—~

obs 2 K
02(C£b) — 7+ 1 (ng—l—ZCgNg | K—1N£2)




Impact of the Mask
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Impact of the Mask

Commander

https://www.aanda.org/articles/aa/pdf/2016/10/aa25936-15.pdf



Impact of the Mask
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https://arxiv.org/pdf/1809.09603.pdf



Impact of the Mask
5Tmasked(,fb) _ W(’ﬁ,) [5TCMB (’fb) 4+ n(ﬁ)]
_ W( 'ﬁ,) 5Tfullsky ( ’f),)



Impact of the Mask
5Tma,sked(,fb) _ W(’fb) [5TCMB (fL) 4+ n(ﬁ)]
= W(R)6T™" (7)

a;nn?sked _ / W(’fl) 5Tfullsky(,ﬁ/)Y£>:n (f),) dn



Impact of the Mask
5Tma,sked (’ﬁ,) _ W(’fl) [5TCMB (’f),) + n(ﬁ)]
_ W( 'f),) 5Tfullsky ( ,ﬁ)

a;nrn?sked _ / W(’fl) 5TfullSky(’fl)Yé;n ('f),) )




Impact of the Mask
oT™*%(n) = W (7)[§TVP(7) + n(f))
_ W(n) 5Tfullsky(n)

G?TSSked _ / W(’fl) 5TfullSky(’fL)YZ,;n ('f),) )




Impact of the Mask
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Impact of the Mask

masked __ fullsky X /AN 7A
Ao / W n’ )Yvém (n)dn
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If W(n)=1, this integral equals 0y’ Oy

The mask breaks the homogeneity of the field and
introduces coupling between different modes



Impact of the Mask

masked __ fullsky X /AN JA
Aym, — @1 /W va’ ( )Yém(n)dn
fullsky
— E :Kém,é’m’ ' m/

If we know the shape of the mask, we can calculate
the matrix K analytically

Kanome = | W)Yo (3)Yg ()i
= 3 wea [ Yow (0)Yem (0 () di
z,”m7’

| 1/2
/ Yy, (7)Yegms (7)Yeymo (R) = (—1)™ [(2el+1)(2£31 : 1)(2334'1)]

9 by Ly L3 by ly A3
0 0 0 —m1 mg m3g )’



PSPy

pspy is a cosmology code for calculating CMB power spectra and covariance matrices. See the python example
notebooks for an introductory set of examples on how to use the package.

pypi v1.4.4 m build passing © launch binder

* Free software: BSD license
* pspy documentation: https://pspy.readthedocs.io.
» Scientific documentation: https://pspy.readthedocs.io/en/latest/scientific_doc.pdf

Installing

$ pip install pspy [—-user]

You can test your installation by running

¢ NaMaster T XpOI’
el Xpure,

NaMaster is a C library, Python module and standalone program to compute full-sky angular cross-power spectra

|
of masked fields with arbitrary spin and an arbitrary number of known contaminants using a pseudo-Cl (aka P o I S p I ce

MASTER) approach. The code also implements E/B-mode purification and is available in both full-sky and flat-sky
modes.

Installation

There are different ways to install NaMaster. In rough order of complexity, they are:

Conda forge

Unless you care about optimizing the code, it's worth giving this one a go. The conda recipe for NaMaster is
currently hosted on conda-forge (infinite kudos to Mat Becker for this). In this case, installing NaMaster means
simply running:

conda install -c conda-forge namaster



A word about higher spin fields.

The density field and the CMB temperature field are scalar fields
(i.e., spin 0); their values do not depend on the coordinate system used.

Conversely, the polarization field of the cosmic microwave background,
as well as the gravitational shear field of galaxies, are spin-2 fields; their
values at a given point depend on the coordinate system.



A word about higher spin fields.

For example, the polarization field is defined in terms of the Stokes
parameters, which quantify the direction of polarization of the electric field
E of the CMB photons.

I

Q(A) = |Eu(R)]* — |Ey(R)]?
U(h) = |E.()% — |Ep(R)?




A word about higher spin fields.

The Stokes parameters are not invariant under a change of coordinates.

Q
>
[

Q(n) cos(2a) + U(n) sin(2a)
—Q(n) sin(2a) + U (n) cos(2a)

>
o~
g
Q Q
>
8
<
N
3>
|

It a=m,Q =Q,U' =U
This property makes the polarization field a spin-2 field.

This is also why the polarization field can be represented
as a “headless” vector field.
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E and B modes decomposition

To account for the transformation of the Stokes parameters under
a change of coordinates, they can be written in the form of a tensor.



E and B modes decomposition

To account for the transformation of the Stokes parameters under
a change of coordinates, they can be written in the form of a tensor.

. _ 1 (Q(n) Un)
P = — . A
=5 (5 o
Just as a vector field can always be decomposed
Into a scalar part and a rotational part.

V=V¢p+VxA



E and B modes decomposition

To account for the transformation of the Stokes parameters under
a change of coordinates, they can be written in the form of a tensor.

P =5 (3 o)

Just as a vector field can always be decomposed
Into a scalar part and a rotational part.

2

V=V¢p+VxA

A spin-2 tensor field can always be decomposed into the
sum of two fields: a scalar field and a pseudoscalar field.

Pab (’fl) — gabE(ﬁ) + BabB(’ﬁ’)

AN

E modes B modes



E and B modes decomposition

To account for the transformation of the Stokes parameters under

1
EbE = (—0,0p + 5(Sabvz)E

a change ¢

Just as a ve
iInto a scala 1

BB = i(eacﬁcﬁb + €,,0°0,)B

A spin-2 ten
sum of two iTe

Pab (’ﬁ’) — gabE(ﬁ’) + BabB(ﬂ)

AN

E modes B modes



This decomposition is truly useful: most physical phenomena in the
primordial Universe generate only E-modes. A possible detection of B-
mode polarization could be the signature of primordial gravitational
waves produced during the inflationary phase of the Universe.
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Regarding the gravitational shear of galaxies, only E-modes are generated
at first order, so B-modes can be used to test for the presence of possible
contaminations of the signal (astrophysical or instrumental).

(Eq, Eg)

10-8 =R

\WILA E modes : Dark energy survey (year 1)

10710 4

1011

https://arxiv.org/pdf/2010.09717.pdf
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Regarding the gravitational shear of galaxies, only E-modes are generated
at first order, so B-modes can be used to test for the presence of possible
contaminations of the signal (astrophysical or instrumental).

W B modes : Dark energy survey (year 1)

https://arxiv.org/pdf/2010.09717.pdf
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For the numerical

tutorial:
https://github.com/thibautlouis/TD



